Let $w$ $(Im\, w \neq 0)$ be a complex number. Then the set of all complex number $z$ satisfying the equation $w - \overline {w}z = k\left( {1 - z} \right)$ , for some real number $k$, is
$\left\{ {z:\left| z \right| = 1} \right\}$
$\left\{ {z:z = \overline z } \right\}$
$\left\{ {z:z \ne 1} \right\}$
$\left\{ {z:\left| z \right| = 1,z \ne 1} \right\}$
If $z_1, z_2, z_3$ $\in$ $C$ such that $|z_1| = |z_2| = |z_3| = 2$, then greatest value of expression $|z_1 - z_2|.|z_2 - z_3| + |z_3 - z_1|.|z_1 - z_2| + |z_2 - z_3||z_3 - z_1|$ is
If $z$ is a complex number such that $| z | = 4$ and $arg \,(z) = \frac {5\pi }{6}$ , then $z$ is equal to
Find the modulus and argument of the complex numbers:
$\frac{1}{1+i}$
$\left| {(1 + i)\frac{{(2 + i)}}{{(3 + i)}}} \right| = $
Let $z_1$ and $z_2$ be any two non-zero complex numbers such that $3\left| {{z_1}} \right| = 4\left| {{z_2}} \right|$. If $z = \frac{{3{z_1}}}{{2{z_2}}} + \frac{{2{z_2}}}{{3{z_1}}}$ then